miRNA profiling along tumour progression in ovarian carcinoma
نویسندگان
چکیده
MicroRNAs (miRNAs) are small non-coding RNAs that exert a regulatory effect post-transcriptionally by binding target mRNAs and inhibiting gene translation. miRNA expression is deregulated in cancer. The aim of this study was to characterize the differences in miRNA expression pattern and the miRNA-regulating machinery between ovarian carcinoma (OC) cells in primary tumours versus effusions. Using miRNA array platforms, we analysed a set of 21 tumours (13 effusions, 8 primary carcinomas) and identified three sets of miRNAs, one that is highly expressed in both primary carcinomas and effusions, one overexpressed in primary carcinomas and one overexpressed in effusions. Levels of selected miRNAs were analysed using quantitative PCR in an independent set of 45 additional tumours (30 effusions, 15 primary carcinomas). Reduced miR-145 and miR-214 and elevated let-7f, miR-182, miR-210, miR-200c, miR-222 and miR-23a levels were found in effusions in both sets. In silico target prediction programs identified potential target genes for some of the differentially expressed miRNAs. Expression of zinc finger E-box binding homeobox (ZEB)1 and c-Myc, targets of miR-200c, as well as of p21 protein (Cdc42/Rac)-activated kinase (PAK)1 and phosphatase and tensin homologue deleted on chromosome 10 (PTEN), predicted targets of miR-222, were analysed. Inverse correlations between expression levels of the indicated miRNAs and of the predicted target genes were found. In addition, higher expression of the miRNA-processing molecules Ago1, Ago2 and Dicer was observed in effusions compared to primary carcinomas. In conclusion, our data are the first to document different miRNA expression and regulation profiles in primary and metastatic OC, suggesting a role for these molecules in tumour progression.
منابع مشابه
Epigenetic Control of Autophagy by MicroRNAs in Ovarian Cancer
Autophagy is a lysosomal-driven catabolic process that contributes to the preservation of cell homeostasis through the regular elimination of cellular damaged, aged, and redundant molecules and organelles. Autophagy plays dual opposite roles in cancer: on one hand it prevents carcinogenesis; on the other hand it confers an advantage to cancer cells to survive under prohibitive conditions. Autop...
متن کاملThe role of microRNAs in ovarian cancer initiation and progression
Epithelial ovarian cancer (EOC) has the highest mortality rate of all gynaecological cancers. One of the greatest impediments to improving outcome is an incomplete understanding of the molecular underpinnings of EOC pathogenesis and progression. Recent studies suggest that microRNAs (miRNAs) are involved in ovarian tumorigenesis and cancer development. Several miRNA profiling studies have ident...
متن کاملThe Role of miRNA Dysregulation in Thyroid Cancer Development by Targeting the Main Signaling Pathways
Thyroid cancer is one of the most common malignancies of endocrine glands, causing carcinomas, such as papillary, follicular, medullary, and anaplastic thyroid carcinomas. Due to the significance of thyroid carcinomas, identification of the main signaling pathways and the affecting mutations has been considered by researchers. Further studies on the dysregulation of oncogenes in signaling path...
متن کاملBilateral Ovarian Clear Cell Carcinoma Arising in 17 Year Longstanding History of Bilateral Ovarian Endometriosis
Clear cell carcinoma of ovary is uncommon ovarian tumour that arises from surface epithelium of ovary. It has well-known association with ovarian endometriosis. We report here the first case of bilateral clear cell carcinoma of ovaries in a 40-year-old woman with a 17-year history of bilateral ovarian endometriosis. In addition, during the longstanding duration of the endometriosis, the patient...
متن کاملRole of Deregulated microRNAs in Breast Cancer Progression Using FFPE Tissue
MicroRNAs (miRNAs) contribute to cancer initiation and progression by silencing the expression of their target genes, causing either mRNA molecule degradation or translational inhibition. Intraductal epithelial proliferations of the breast are histologically and clinically classified into normal, atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2011